Research: Cloud Data Warehouse

Seit kurzem scheint das Thema „Cloud Data Warehouse“ (CDW) im Trend zu sein. Zumindest Forrester hat für Q4/2018 eine eigene Forrester Wave herausgegeben genau zu dem Thema. Darin wurden 14 Anbieter untersucht.

Forrester definiert das Cloud Data Warehouse wie folgt (frei übersetzt):

Ein sicheres, skalierbares On-Demand Self-Service Data Warehouse, welches die Datenbeschaffung, Administration, Tuning, Backup und Recovery automatisiert um Analytics und wertvolle Erkenntnisse bei gleichzeitiger Minimierung der administrativen Anforderungen zu liefern.

– The Forrester Wave™: Cloud Data Warehouse, Q4 2018

Nachdem GA für SAP Data Warehouse Cloud erst für Q4/2019 angekündigt ist, sind andere Anbieter hier schon deutlich länger auf dem Markt, z. B.:

  • Google Big Query (11/2011)
  • Amazon Redshift (10/2012)
  • Snowflake Computing (06/2015)
  • Microsoft Azure SQL Data Warehouse (07/2016)
  • Oracle – Autonomous Data Warehouse Cloud (03/2018)

In sofern ist SAP in The Forrester Wave auch nicht vertreten bzw. hat offensichtlich den Kriterien der Untersuchung nicht genügt.

Im Magic Quadrant von Gartner (01/2019 – Gartner Magic Quadrant for Data Management Solutions for Analytics) findet SAP noch seinen Platz und auch der Cloud-Trend bleibt nicht unbemerkt. Eine Abgrenzung wird von Gartner hier jedoch noch nicht vorgenommen. Somit wird BW/4HANA, HANA selbst (welche jedoch als in der Cloud verfügbar wahrgenommen wurden) sowie der SAP Cloud Platform-basierte Big Data Service analysiert. Trotz Kritikpunkten bei Themen wie der Elastizität wird beispielsweise die Multi-Cloud Strategie positiv hervorgehoben und SAP ist bei Gartner im Leader-Quadranten vor Anbietern wie Snowflake, IBM und Google zu finden.

Bei Forrester sind die Leader ganz klar Amazon Web Services (AWS), Snowflake, Google und auch noch Oracle.

2017 hat BARC im ihrer Reseach Study „BI and Data Management in the Cloud: Issues and Trends“ folgende Feststellung gemacht (frei übersetzt):

Unternehmen betreiben eher BI (Frontend)-Anwendungen in der Cloud als Data Warehouses, Data Marts oder Datenintegration.

Data Management-Lösungen benötigen IaaS und PaaS sowie die Prüfung von Datenschutz, Datensicherheit und unternehmenspolitischer Aspekte.

In der BARC Research Study „Datenmanagement im Wandel“ von 2014 zeigt sich ein noch viel nüchterneres Bild:

  • Bei der Frage, was sich aktuell konkret verändert, antworteten nur 6% mit „Rückgriff auf cloud-basierte Data Warehouse“
  • Die Frage nach dem Umgang mit Self-Service BI beantworteten gerade mal 2% mit „Auslagerung in die Cloud“
  • Im Vergleich zu anderen Ansätzen war die Lösung „Cloud-basierte Data Warehouse-Lösungen“ zur einfacheren Umsetzung von DWH-Anforderungen weit abgeschlagen. Wichtiger waren „In-Memory Datenbanksysteme“, „Automatisiertes DWH“, uvam.

Im Whitepaper „Cloud Data Warehouse Trends for 2019“ wird nun jedoch die Frage aufgeworfen, ob das CDW gar der Schlüssel zur Digitalen Transformation ist. Die Antwort folgt schnell. Das CDW wird als wichtiger erster Schritt zum datengetriebenen Unternehmen gesehen.

Lt. Whitepaper sind die Top-Gründe für das CDW:

  • Flexibles Kostenmodell
  • Vorteil der Nutzung von Cloud-Features
  • Bessere Performance

Typische Anwendungsfälle sind:

  • Kundenanalysen für das Marketing
  • Finanzanalysen
  • Vertriebsunterstützung
  • Anbindung an einen Data Lake für Analytics
  • Kundenserviceanalysen
  • IT-Analytics

Die größten Herausforderungen dabei sind:

  • Data Governance
  • Integration von Daten aus unterschiedlichen Quellen
  • Daten in das Data Warehouse zu bekommen
  • Einfacher Datenzugriff für den Anwender
  • Kosten

Nun gut, es zeigt sich, dass Thema Cloud Data Warehouse ist nicht neu. Der Self-Service Trend hat jedoch das Angebot sicherlich verändert. So positioniert SAP sein angekündigtes SAP Data Warehouse Cloud mit der Zielgruppe Business Analyst, wie auch schon SAP Analytics Cloud.

Persönlich denke ich, als BI-Berater wird man deshalb nicht arbeitslos. Aber Aufgaben werden sich verändern. Die Fachbereiche werden mündiger und können einen immer größeren Bereich selbst abdecken. Das ist gut, weil es die faktenbasierte Entscheidungsfähigkeit bei richtiger Strategie stärkt. Denn eines ist klar. Excel ist und bleibt das beliebteste Tool für BI und ist dank Office 365 auch in der Cloud verfügbar mit Power Pivot und Power BI als Verstärkung. Ob das gut ist, ist eine ganz andere Frage.

Die Herausforderungen sind immer neue Datenquellen, gerade wegen der Cloud. Die Harmonisierung und semantisch saubere Integration der Daten überfordert Fachbereiche oder führt dort zur Spezialistenbildung. Die zunehmende Dynamik im Internet wie auch die zunehmende Agilität in Unternehmen erfordert eine schnelle BI-Adaption und Konzept-Know-How im Umgang mit historischen Daten. Daten sind nicht mehr nur strukturiert, sondern das, was bisher Big Data und NoSQL geleistet hat, wird zunehmend integriert und erhöht die Anforderungen. Basistechnologien wie SAP HANA liefern heute Funktionalitäten wie Text, Spatial, Predictive Analytics oder Graph-Verarbeitung, um höheren Nutzen aus den Daten zu ziehen. Die Komplexität der nutzbaren Methoden nimmt damit immer weiter zu. Die Vielfalt verfügbarer Komponenten und neuer oder unterschiedlicher Schnittstellen ebenso. Die Anforderung an die Datenqualität werden deutlich steigen und eine ganzheitliche Sicht auf das Unternehmen rückt eher in die Ferne als Realität zu werden.

Für Unternehmen mit einfachen operativen Systemen und überschaubaren Anforderungen an Reporting und Datenanalysen werden es also leicht haben, jedoch auch nur geringen Nutzen aus einer zunehmen Digitalisierung ziehen. Für alle anderen ist Self Service und zunehmende Data Literacy eine Notwendigkeit um irgendwie noch mithalten zu können, da die IT-Fachkräfte nicht schnell genug vom Baum wachsen werden.

Kommentar verfassen

Trage deine Daten unten ein oder klicke ein Icon um dich einzuloggen:

WordPress.com-Logo

Du kommentierst mit Deinem WordPress.com-Konto. Abmelden /  Ändern )

Google Foto

Du kommentierst mit Deinem Google-Konto. Abmelden /  Ändern )

Twitter-Bild

Du kommentierst mit Deinem Twitter-Konto. Abmelden /  Ändern )

Facebook-Foto

Du kommentierst mit Deinem Facebook-Konto. Abmelden /  Ändern )

Verbinde mit %s