Der Weg zum Data Scientists

Wie wird man eigentlich Data Scientist? Benötigt man tatsächlich alle Skills wie:

  • Mathematik/Statistik
  • Informatik
  • Betriebswirtschaft & Softskills
  • Fachliche Expertise
  • Visualisierung & Storytelling

Sind Data Scientists die Fabelwesen, die Einhörner mit dem unglaublichen Skill? Gibt es  Data Scientists eigentlich nur als Team und nicht in einer Person? Und wenn, dann mindestens mit einem Doppel-Doktor, also mit einem mindestens mal Pi-shaped Skill?

Mittlerweile sind viele Hochschulen und Bildungsanbieter auf den Zug aufgesprungen und bieten Ausbildungen zum Data Scientists oder ähnlichem an. Was diese Ausbildungen wirklich leisten, wird wohl nur beurteilen können, wer diese bewältigt hat. Trotzdem lässt sich sicherlich einiges aus den Angeboten lernen.

Im Folgenden eine kurze Übersicht über diverse greifbare Angebote aus (weitgehend) meiner Region. Diese bilden verschiedene Ansätze und Niveaus ab:

Fraunhofer-Allianz Big Data

Ein 13-tägiger Kurs, welcher auf parallele Berufserfahrung setzt und sich an Business Developer, Analysten und Application Developer richtet. Er umfasst  die Grundlagen für Datenmanagement, Big Data und Analytics. Kosten: 13.150,-€

3-stufiger Zertifikatskurs
Data Scientist Basic Level (5 Tage)
 -> Big Data-Systeme
 -> Datenanalyse
 -> Datenschutz, Datensicherheit
 -> Datenmanagement
 -> Big Data & Business
Data Analyst (4 Tage)
 -> KNIME, Phyton
 -> Modeling Techniques
 -> Advanced Modeling
 -> In-depth analysis
Data Manager in Science (4 Tage)
 + Berufserfahrung

Coursera – Data Science Specialization

Eine auf 10 Kurse und 43 Wochen ausgelegte Spezialisierung der John Hopkins University, welche wirklich stark auf Analytics setzt und stark mit R unterwegs ist. Kosten: ca. 450,-€ (laufzeitabhängig 45€/Monat)

10 Kurse
The Data Science Toolbox (3 Wochen – 1-4h)
 -> Überblick
 -> R-Installation
 -> Git & Github
 -> Konzepte
R Programming (4 Wochen)
Getting and Cleaning Data (4 Wochen)
Exploratory Data Analysis (4 Wochen)
Reproducible Research (4 Wochen – 4-9h)
Statistical Inference (4 Wochen)
Regression Models (4 Wochen)
Practical Machine Learning (4 Wochen)
Developing Data Products (7 Wochen)

Uni Ulm – Business Analytics (M. Sc.)

Der Studiengang richtet sich an Berufstätige mittlere und höhere Führungskräfte, Projektleiter/innen und Berater/innen und bietet einen Abschluß als Master of Science. Das Spektrum ist eher breit angelegt. Kosten: ca. 17.000,-€

Vollzeit 3 Semester (Teilzeit möglich)
3 Säulen
 -> Wirtschaftswissenschaften
 -> Mathematik
 -> Informatik
Pflichtmodule
 -> Grundlagen Business Analytics
 -> Strategisches Management
 -> Grundlagen Stochastik
 -> Angewandte Statistik
 -> Prädikative Methoden
 -> Grundlagen von Datenbanksystemen
 -> Business Process Management
 -> Projektarbeit
Wahlmodule
 -> Strategisches Prozessmanagement
 -> Finanzielles Management
 -> Controlling
 -> Angewandte Operations Research
 -> Numerische Methoden für Big Data
 -> Social Media Analytics
 -> Data Science
 -> Infrastruktur & Sicherheit

HS Albstadt-Sigmaringen – Data Science (M. Sc.)

Das Studium ist berufsbegleitend auf 3 Jahre angelegt und führ zum Master of Science. Es bietet ein breites Spektrum an Themen, jedoch gleichzeitig stark fokussiert auf Big Data und Analytics. Kosten: 18.580,-€

Teilzeit 6 Semester
3 Säulen
 -> Business Information
 -> Data Analytics
 -> Data Management
BI und Data Warehouses
Data Mining
Mathematical Foundations of Data Science
Programming for Data Science
Decision Support
Large Scale Data Analysis
Web Integration
Databases for Big Data
Business Process & Big Data Use Cases
Text Mining
Machine Learning
Optimization Techniques for Data Analysis
Practical Training
Data Privacy
Data Compliance
Semantic Web Technologies
Web Mining
In-Memory DB/OLAP
Thesis

SAP Learning Journey – Data Scientist

Die SAP-Kurse sind stark produktspezifisch und nur lose aufeinander aufbauend. Die openSAP-Kurse bieten einen einfachen und kostenfreien Einstieg. Will man die SAP Trainings besuchen, steigen die Kosten jedoch schnell über 20.000,-€ und übersteigen damit leicht die Master-Programme der Hochschulen.

Lose Kurse mit verschiedenen Vertiefungsstufen
Freie Kombination aus
 -> eLearning
 -> Classroom
Introduction to Data Science
Enterprise Machine Learning in a Nutshell
Driving Business Results with Big Data
SAP Big Data Overview
How the IoT and Smart Services will change Society
SAP HANA Introduction
R Integration with SAP HANA
SQL Basics for SAP HANA
Data Provisioning
SAP HANA Smart Data Integration
Introduction to SAP BO BI Solutions
Data Science Case Study
SAP HANA Modeling
Introduction to Predictive Analytics & Automated Analytics
Predictive Analytics: Details of Expert Analytics
SAP Lumira
SAP BusinessObjects Cloud
Statistical Thinking for Data Science and Analytics (edX – 5 Wochen)
 -> Statistical Thinking
 -> Exploratory Data Analysis and Visualization
 -> Introduction to Bayesian Modeling

Alles in allem kann man sich nicht über die Vielfalt beschweren. Für jeden ist etwas dabei, abhängig von der Zeit, der genauen Richtung und den finanziellen Möglichkeiten. Bei den Masterkursen ist man natürlich stark auf die Qualität der Professoren angewiesen und das Programm umfasst nur wenig Flexibilität in einem sich sehr schnell verändernden Umfeld.

Von den eingangs genannten Skills eines Data Scientists konzentrieren Sich die Anbieter i. d. R. auf Mathematik/Statistik im Sinne von Analytics und Data Mining und Ergänzen Fertigkeiten im Bereich Mathematik. Nur die Uni Ulm bietet auch klar betriebswirtschaftliche Aspekte mit an. Bei den Anbietern wie Fraunhofer oder Coursera mag das noch angehen, da man entsprechende Kurse auch dort oder bei anderen Anbietern flexibel mit aufnehmen kann. Das Studium an der HS Albstadt-Siegmaringen scheint dagegen etwas unausgewogen, und setzt wohl mehr auf die Tiefe des Fachgebiets.

Ist man nicht scharf auf ein Zertifikat oder Master-Abschluß, so bietet sich über die freien Anbieter eine gute Gelegenheit, sich sein persönliches Programm, nach seinen Ansprüchen und Vorstellungen zusammen zu stellen.

Da das Gebiet „Data Science“ selbst kaum fest abzugrenzen ist, sollte man sich aus meiner Sicht, gerade als Berufstätiger, die Rosinen herauspicken und den Rest evtl. der Erfahrung in Projekten überlassen.

Advertisements

Kommentar verfassen

Trage deine Daten unten ein oder klicke ein Icon um dich einzuloggen:

WordPress.com-Logo

Du kommentierst mit Deinem WordPress.com-Konto. Abmelden / Ändern )

Twitter-Bild

Du kommentierst mit Deinem Twitter-Konto. Abmelden / Ändern )

Facebook-Foto

Du kommentierst mit Deinem Facebook-Konto. Abmelden / Ändern )

Google+ Foto

Du kommentierst mit Deinem Google+-Konto. Abmelden / Ändern )

Verbinde mit %s